Entre para a LISTA VIP da Black Friday

00

DIAS

00

HORAS

00

MIN

00

SEG

Clique para saber mais
Alura > Cursos de Data Science > Cursos de Data Science > Conteúdos de Data Science > Primeiras aulas do curso Python: análise de dados com SQL

Python: análise de dados com SQL

Estruturando as tabelas - Apresentação

Olá! Meu nome é Mirla Costa e vou te acompanhar no curso: Utilizando SQL no Pandas!

Mirla é uma mulher branca, de cabelos cacheados e pretos na altura dos ombros. Usa um óculos de grau de armação redonda e uma camiseta regata preta. Ao fundo, uma parede lisa com iluminação degrade do azul para o verde.

Esse curso é para você que já lida com python e deseja aprender como integrá-lo a outras ferramentas de dados, como o SQL. Também é para pessoas que já sabem SQL e querem aprender python.

Aqui exploraremos o banco de dados de uma loja virtual que vende roupas e acessórios com SQL, porém em um ambiente Python.

A partir disso, poderemos fazer análises e visualizações que vão contribuir na tomada de decisão da empresa.

Ao concluir o curso você será uma pessoa capacitada a fazer consultas SQL em um ambiente python. Além disso, também saberá como trabalhar com o retorno das consultas no Pandas.

Para que você tenha maior proveito do curso é recomendado que você tenha um conhecimento básico em SQL e pleno conhecimento em Python, Pandas e Matplotlib.

Vamos nessa?

Estruturando as tabelas - Conhecendo as ferramentas

Fomos contratados pela Meteora, uma loja de roupas e acessórios que atende todo o Brasil.

Nossa função será entender o banco de dados e exibir informações relevantes que auxiliem a loja na tomada de decisões.

Para isso, solicitaram diversas análises nas quais colocaremos em prática ao longo do curso.

Antes de começarmos a trabalhar nesse projeto, vamos conhecer as ferramentas que utilizaremos.

Conhecendo as Ferramentas

A primeira ferramenta que utilizaremos é o Google Colab. Nele, vamos subir um notebook pré-pronto para fazermos as análises do Meteora.

Você pode encontrar o notebook nas nossas atividades, na lateral esquerda dessa página. Após baixá-lo, suba o arquivo no Google Colab para ter acesso aos dados.

Também utilizaremos as bibliotecas Pandas e Matplotlib. Por meio delas, poderemos fazer análises por meio de tabelas e gráficos.

Sabendo disso, no Colab, acessamos nosso notebook. Na primeira célula importaremos as bibliotecas acima.

Para isso, escrevemos import pandas as pd. Na linha debaixo, escrevemos import matplotlib.pyplot as plt.

Em sequência, importaremos o SQLAlchemy que nos permitirá executar consultas no banco de dados da Meteora.

Para isso, importaremos três módulos essenciais dessa biblioteca. Na linha abaixo escrevemos from sqlalchemy import create_engine, inspect, text. Feito isso, apertamos "Shift + Enter".

import matplotlib.pyplot as plt
import pandas as pd
from sqlalchemy import create_engine, inspect, text

Feito isso, as ferramentas foram importadas!

Importante ressaltar que além dessas bibliotecas, todos os dados também estarão no SQLLite.

Não teremos empecilhos para utilizá-lo, pois teremos o auxílio do SQLAlchemy que fará as consultas no banco de dados com o Python.

Já sabemos nossa função e as ferramentas que serão utilizadas. No vídeo seguinte conheceremos as tabelas que trabalharemos nesse projeto.

Estruturando as tabelas - Coletando os dados

Para realizarmos a análise, precisamos dos dados da Meteora. Nesse vídeo, vamos aprender como coletá-los.

Coletando os dados

A empresa disponibilizou links de quatro tabelas relacionadas. Eles já estão no nosso notebook, junto com as variáveis que receberão como string. Dessa forma:

url_itens_pedidos = 'https://github.com/alura-cursos/SQL-python-integracao/raw/main/TABELAS/itens_pedidos.csv'
url_pedidos = 'https://github.com/alura-cursos/SQL-python-integracao/raw/main/TABELAS/pedidos.csv'
url_produto = 'https://github.com/alura-cursos/SQL-python-integracao/raw/main/TABELAS/produtos.csv'
url_vendedores = 'https://github.com/alura-cursos/SQL-python-integracao/raw/main/TABELAS/vendedores.csv'

Caso você tenha optado por não realizar o download do notebook da Meteora, não se preocupe. Você pode acessar os links na atividade dessa aula, na lateral esquerda da plataforma.

Sabendo disso, entenderemos um pouco mais sobre essas tabelas.

Entendendo as tabelas

O banco de dados da Meteora é composto por tabelas com o foco em vendas. Isso significa que cada tabela possui como tema um setor de venda da Meteora. É com esse material que trabalharemos nosso projeto.

A primeira tabela, chamada itens_pedidos, se refere ao produto que foi pedido. Então, encontramos informações sobre o produto, como valor, frete e estado que foi enviado.

A tabela pedidos se refere a venda realizada, traz informações sobre quem vendeu, o que, valor e outros dados.

A terceira tabela produto, traz dados como nome, marca e condição do produto. Por fim, a última tabela vendedores se refere aos nomes dos vendedores que realizaram as vendas.

Importante lembrar que essas tabelas seguem um esquema de relação entre chaves primárias, estrangeiras entre outras.

Porém, nesse curso não vamos nos preocupar com isso, afinal, nosso objetivo não é modelar os dados e sim analisá-los.

Sabendo disso, no Colab, faremos a leitura das tabelas utilizando o Pandas. Para isso, na célula abaixo dos links, escrevemos itens_pedidos = pd.read_csv(url_itens_pedidos).

Repetiremos o mesmo padrão de código para as outras tabelas. O código fica da seguinte forma:

itens_pedidos = pd.read_csv(url_itens_pedidos)
pedidos = pd.read_csv(url_pedidos)
produtos = pd.read_csv(url_produto)
vendedores = pd.read_csv(url_vendedores)

Apertamos "Shift + Enter". Feito isso, as tabelas são salvas em dataframe.

No vídeo seguinte faremos a alocação dessas tabelas no banco para podermos trabalhar com os dados. Vamos lá?

Sobre o curso Python: análise de dados com SQL

O curso Python: análise de dados com SQL possui 123 minutos de vídeos, em um total de 45 atividades. Gostou? Conheça nossos outros cursos de Data Science em Data Science, ou leia nossos artigos de Data Science.

Matricule-se e comece a estudar com a gente hoje! Conheça outros tópicos abordados durante o curso:

Aprenda Data Science acessando integralmente esse e outros cursos, comece hoje!

Conheça os Planos para Empresas